69 research outputs found

    D-branes with Lorentzian signature in the Nappi-Witten model

    Get PDF
    Lorentzian signature D-branes of all dimensions for the Nappi-Witten string are constructed. This is done by rewriting the gluing condition J+=FJJ_+=FJ_- for the model chiral currents on the brane as a well posed first order differential problem and by solving it for Lie algebra isometries FF other than Lie algebra automorphisms. By construction, these D-branes are not twined conjugacy classes. Metrically degenerate D-branes are also obtained.Comment: 22 page

    Galilean quantum gravity with cosmological constant and the extended q-Heisenberg algebra

    Full text link
    We define a theory of Galilean gravity in 2+1 dimensions with cosmological constant as a Chern-Simons gauge theory of the doubly-extended Newton-Hooke group, extending our previous study of classical and quantum gravity in 2+1 dimensions in the Galilean limit. We exhibit an r-matrix which is compatible with our Chern-Simons action (in a sense to be defined) and show that the associated bi-algebra structure of the Newton-Hooke Lie algebra is that of the classical double of the extended Heisenberg algebra. We deduce that, in the quantisation of the theory according to the combinatorial quantisation programme, much of the quantum theory is determined by the quantum double of the extended q-deformed Heisenberg algebra.Comment: 22 page

    Canonical quantization of non-commutative holonomies in 2+1 loop quantum gravity

    Get PDF
    In this work we investigate the canonical quantization of 2+1 gravity with cosmological constant Λ>0\Lambda>0 in the canonical framework of loop quantum gravity. The unconstrained phase space of gravity in 2+1 dimensions is coordinatized by an SU(2) connection AA and the canonically conjugate triad field ee. A natural regularization of the constraints of 2+1 gravity can be defined in terms of the holonomies of A+=A+ΛeA+=A + \sqrt\Lambda e. As a first step towards the quantization of these constraints we study the canonical quantization of the holonomy of the connection Aλ=A+λeA_{\lambda}=A+\lambda e on the kinematical Hilbert space of loop quantum gravity. The holonomy operator associated to a given path acts non trivially on spin network links that are transversal to the path (a crossing). We provide an explicit construction of the quantum holonomy operator. In particular, we exhibit a close relationship between the action of the quantum holonomy at a crossing and Kauffman's q-deformed crossing identity. The crucial difference is that (being an operator acting on the kinematical Hilbert space of LQG) the result is completely described in terms of standard SU(2) spin network states (in contrast to q-deformed spin networks in Kauffman's identity). We discuss the possible implications of our result.Comment: 19 pages, references added. Published versio

    Defect loops in gauged Wess-Zumino-Witten models

    Get PDF
    We consider loop observables in gauged Wess-Zumino-Witten models, and study the action of renormalization group flows on them. In the WZW model based on a compact Lie group G, we analyze at the classical level how the space of renormalizable defects is reduced upon the imposition of global and affine symmetries. We identify families of loop observables which are invariant with respect to an affine symmetry corresponding to a subgroup H of G, and show that they descend to gauge-invariant defects in the gauged model based on G/H. We study the flows acting on these families perturbatively, and quantize the fixed points of the flows exactly. From their action on boundary states, we present a derivation of the "generalized Affleck-Ludwig rule, which describes a large class of boundary renormalization group flows in rational conformal field theories.Comment: 43 pages, 2 figures. v2: a few typos corrected, version to be published in JHE

    Geometric construction of D-branes in WZW models

    Get PDF
    The geometric description of D-branes in WZW models is pushed forward. Our starting point is a gluing condition\, J+=FJJ_{+}=FJ_- that matches the model's chiral currents at the worldsheet boundary through a linear map FF acting on the WZW Lie algebra. The equivalence of boundary and gluing conditions of this type is studied in detail. The analysis involves a thorough discussion of Frobenius integrability, shows that FF must be an isometry, and applies to both metrically degenerate and nondegenerate D-branes. The isometry FF need not be a Lie algebra automorphism nor constantly defined over the brane. This approach, when applied to isometries of the form F=RF=R with RR a constant Lie algebra automorphism, validates metrically degenerate RR-twined conjugacy classes as D-branes. It also shows that no D-branes exist in semisimple WZW models for constant\, F=RF=-R.Comment: 23 pages, discussion of limitations of the gluing condition approach adde

    Geometry of the Grosse-Wulkenhaar Model

    Full text link
    We define a two-dimensional noncommutative space as a limit of finite-matrix spaces which have space-time dimension three. We show that on such space the Grosse-Wulkenhaar (renormalizable) action has natural interpretation as the action for the scalar field coupled to the curvature. We also discuss a natural generalization to four dimensions.Comment: 16 pages, version accepted in JHE

    Evidence for F(uzz) Theory

    Full text link
    We show that in the decoupling limit of an F-theory compactification, the internal directions of the seven-branes must wrap a non-commutative four-cycle S. We introduce a general method for obtaining fuzzy geometric spaces via toric geometry, and develop tools for engineering four-dimensional GUT models from this non-commutative setup. We obtain the chiral matter content and Yukawa couplings, and show that the theory has a finite Kaluza-Klein spectrum. The value of 1/alpha_(GUT) is predicted to be equal to the number of fuzzy points on the internal four-cycle S. This relation puts a non-trivial restriction on the space of gauge theories that can arise as a limit of F-theory. By viewing the seven-brane as tiled by D3-branes sitting at the N fuzzy points of the geometry, we argue that this theory admits a holographic dual description in the large N limit. We also entertain the possibility of constructing string models with large fuzzy extra dimensions, but with a high scale for quantum gravity.Comment: v2: 66 pages, 3 figures, references and clarifications adde

    Gauge-Higgs Unification In Spontaneously Created Fuzzy Extra Dimensions

    Get PDF
    We propose gauge-Higgs unification in fuzzy extra dimensions as a possible solution to the Higgs naturalness problem. In our approach, the fuzzy extra dimensions are created spontaneously as a vacuum solution of certain four-dimensional gauge theory. As an example, we construct a model which has a fuzzy torus as its vacuum. The Higgs field in our model is associated with the Wilson loop wrapped on the fuzzy torus. We show that the quadratic divergence in the mass of the Higgs field in the one-loop effective potential is absent. We then argue based on symmetries that the quantum corrections to the Higgs mass is suppressed including all loop contributions. We also consider a realization on the worldvolume theory of D3-branes probing C3/(ZN×ZN)C^3/(Z_N \times Z_N) orbifold with discrete torsion.Comment: 1+38 pages, 4 figures v2: refs adde

    Limits of minimal models and continuous orbifolds

    Get PDF
    The lambda=0 't Hooft limit of the 2d W_N minimal models is shown to be equivalent to the singlet sector of a free boson theory, thus paralleling exactly the structure of the free theory in the Klebanov-Polyakov proposal. In 2d, the singlet sector does not describe a consistent theory by itself since the corresponding partition function is not modular invariant. However, it can be interpreted as the untwisted sector of a continuous orbifold, and this point of view suggests that it can be made consistent by adding in the appropriate twisted sectors. We show that these twisted sectors account for the `light states' that were not included in the original 't Hooft limit. We also show that, for the Virasoro minimal models (N=2), the twisted sector of our orbifold agrees precisely with the limit theory of Runkel & Watts. In particular, this implies that our construction satisfies crossing symmetry.Comment: 33 pages; v2: minor improvements and references added, published versio
    corecore